OPTIMIZATION OF EVALUATION OF THE INFORMATIVITY OF MEDICAL INDICATORS ON THE BASIS OF THE HYBRID APPROACH
Abstract
Feature Selection task is one of most complicated and actual in Data Mining area. Any approaches for it solving are based on non-mathematical and presentative hypothesis. New approach for evaluation of medical features information quantity, based on optimal combination of Feature Selection and Feature Extraction methods. This approach permits to produce optimal reduced number of features with linguistic interpreting of each ones. Hybrid system of Feature Selection/Extraction is proposed.
This system is numerically simple, can produce Feature Selection/ Extraction with any number of features using standard method of principal component analysis and calculating distance between first principal component and all medical features.
Downloads
References
2. Pal S.K. Fuzzy set theoretic measures for automatic feature evaluation: II / S.K. Pal // Information Sciences. – 1992. – № 64. – Р. 165-179.
3. Pal S.K. Fuzzy set theoretic measures for automatic feature evaluation / S.K. Pal, B. Chakraborty // IEEE Trans. on Systems, Man and Cybernetics. – 1986. – № 16. – Р. 754-760.
4. Priddy K.L. Bayesian selection of important features or feed-forward neural networks / K.L. Priddy, S.K. Rogers, D.W. Ruck, G.L. Tarr, M. Kabrisky //Neurocomputing. – 1993. – № 5. – Р. 91-103.
5. Steppe J.M. Improved feature screening in feedforward neural networks / J.M. Steppe, K.W. Bauer // Neurocomputing. – 1996. – № 13. – Р. 47-58.
6. De R.K. Feature analysis: neural network and fuzzy set theoretic approaches / R.K. De, N.R. Pal, S.K Pal // Pattern Recognition. – 1997. – № 30. – Р. 1579-1590.
7. Pregenzer M. Automated feature selection with a distinctive sen-sitive learning vector quantizer / M. Pregenzer, G. Pfurtscheller, D. Flotzinger // Neurocomputing. – 1996. – № 11. – Р. 19-29.
8. Rao C.R. The use and interpretation of principal component analysis in applied research / C.R. Rao // Sankhya. – 1964. – Vol. 26. – № 4. – P. 329-358.
9. Okamoto M. Optimality principal components multivariate analysis / M. Okamoto // Proc. 3 Int. Symp. Dayton. – 1967.
10. Okamoto M. Minimization of eigenvalues of a matrix and opti-mality of principal components / M. Okamoto, M. Kanazawa // Ann. Math. Statist. – 1968. – Vol. 39. – № 3. – P. 1-20.
11. Bishop C.M. Neural Networks for Pattern Recognition / C.M. Bishop. − Oxford: Clarendon Press, 1995. – 482 p.
12. Cichocki A. Neural Networks for Optimization and Signal Processing / A. Cichocki, R. Unbehauen. – Stuttgart: Teubner, 1993. – 526 p.
13. Han J. Data Mining: Concepts and Techniques / J. Han, M. Kamber. – Amsterdam: Morgan Kaufman Publ., 2006. – 743 p.
14. Файнзильберг Л.С. Математические методы оценки полез-ности диагностических признаков: Монография / Л.С. Файнзильберг. – К.: Освіта України. 2010. – 152 с.
15. Mulesa P. Fuzzy Spacial Extrapolation Method Using Manhattan Metrics for Tasks of Medical Data Mining / P. Mulesa, I. Perova // Computer Science and Information Technologies CSIT’2015. – Lviv, 2015. – Р. 104-106.
16. Dermatology dataset. – Available from: http://archive.ics.uci.edu/ ml/machine-learning-databases/dermatology/dermatology.data. – Access Date: 2008.
17. Breast Cancer in Wisconsin dataset. – Available from: http:// archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data. – Access Date: 2008.
18. Pima Indians Diabetes dataset. – Available from: http://archive. ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/ pima-indians-diabetes.data. – Access Date: 2008.
19. Parkinson dataset. Available from: http://archive.ics.uci.edu/ml/ machine-learning-databases/parkinsons/parkinsons.data. – Access Date: 2008.
This work is licensed under a Creative Commons Attribution 4.0 International License.