ONLINE MODIFICATION OF THE METHOD OF X-MEDIUM ON THE BASIS OF ANSAMBLY OF SELORGANIZED MAP T. KOHONEN

  • Є.В. БОДЯНСЬКИЙ Харківський національний університет радіоелектроніки, Україна
  • А.О. ДЕЙНЕКО Харківський національний університет радіоелектроніки, Україна
  • П.Є. ЖЕРНОВА Харківський національний університет радіоелектроніки, Україна
  • В.О. РЄПІН Харківський національний університет радіоелектроніки, Україна
Keywords: clustering, X-means method, ensemble of neural network, self-organization map, self-learning, T. Kohonen’s neural network, similarity measure

Abstract

The modified X-means method for clustering in the case when observations are sequentially fed to processing the proposed. This approach’s based on the ensemble of the clustering neural networks, proposed ensemble contains the T. Kohonen’s self-organizing maps. Each of the clustering neural networks consist of different number of neurons, where number of clusters is connected with the quality of there neurons. All ensemble members process information that siquentionally is fed to the system in the parallel mode. The effectiveness of clustering process is determined using Caliński-Harabasz index. The self-learning algorithm uses similarity measure of special type that. The feature of proposed method is absent of the competition step, i.e. neuron-winner is not determined. A number of experiments has been held in order to investigate the proposed system’s properties. Experimental results have proven the fact that the system under consideration could be used to solve a wide range of Data Mining tasks when data sets are processed in an online mode. The proposed ensemble system provides computational simplicity, and data sets are pro-cessed faster due to the possibility of parallel tuning.

Downloads

Download data is not yet available.

References

1. Gan G. Data Clustering: Theory, Algorithms and Application / G. Gan, Ch. Ma, J.Wu. – Philadelphia: SIAM, 2007. – 455 p.

2. Xu R. Clustering, IEEE Press Series on Computational Intelligence / R. Xu, D.C. Wunsch. – Hoboken, NJ: John Wiley & Sons, Inc., 2009. – 370 p.

3. Pelleg D. X-means: extending K-means with efficient estimation of the number of clusters / D. Pelleg, A. Moor // Proc. 17th Int. Conf. on Machine Learning. – San Francisco: Morgan Kaufmann. – 2000. – P.727-730.

4. Ishioka T. An expansion of X-means for automatically determining the optimal number of clusters / T. Ishioka // Proc. 4th IASTED Int. Conf. Computational Intelligence.  Calgary, Alberta.  2005.  P.91-96.

5. Bifet A. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams / A. Bifet.  Amsterdam: IOS Press, 2010.  224 p.

6. Kohonen, T. Self-OrganizingMaps / T.Kohonen.  Berlin: Springer-Verlag, 1995.  362 p.

7. Strehl A. Cluster Ensembles – A knowledge reuse framework for combining multiple partitions / A. Strehl, J. Ghosh // Journal of Machine Learning Research. – 2002. – № 2. – P.583-617.

8. Topchy A. Clustering ensembles: models of consensus and weak partitions / A. Topchy, A.K. Jain, W. Punch // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2005. – № 27. – P.1866-1881.

9. Alizadeh H. To improve the quality of cluster ensembles by selecting a subset of base clusters / H. Alizadeh, B.Minaei-Bidgoli, H.Parvin // Journal of Experimental & Theoretical Artificial Intelligence. – 2013. – № 26. – P.127-150.

10. Charkhabi M. Cluster ensembles, majority vote, voter eligibility and privileged voters / M. Charkhabi, T. Dhot, S.A. Mojarad // Int. Journal of Machine Learning and Computing. – 2014. – № 4. – P.275-278.

11. Bodyanskiy Ye. Computational intelligence techniques for data analysis / Ye. Bodyanskiy // Lecture Notes in Informatics. – Bonn: GI. – 2005. – P.15-36.

12. Бодянский Е.В. Искусственные нейронные сети: архитектуры, обучение, применения / Е.В. Бодянский, О.Г. Руденко. – Харьков: ТЕЛЕТЕХ, 2004. – 372 с.

13. Аналіз та обробка потоків даних засобами обчислювального інтелекту: Монографія / Є.В. Бодянський, Д.Д. Пелешко, О.А. Винокурова, С.В. Машталір, Ю.С. Іванов. – Львів: Вид-во Львів. політехніки, 2016. – 235 c.

14. Murphy P.M. UCI Repository of machine learning databases / P.M. Murphy, D. Aha. – URL: http://www.ics.uci.edu/mlearn/ MLRepository.html.CA:University of California, Department of Information and Computer Science, 1994.
Published
2017-09-27
How to Cite
БОДЯНСЬКИЙ, Є., ДЕЙНЕКО, А., ЖЕРНОВА, П., & РЄПІН, В. (2017). ONLINE MODIFICATION OF THE METHOD OF X-MEDIUM ON THE BASIS OF ANSAMBLY OF SELORGANIZED MAP T. KOHONEN. Transport Development, (1(1), 96-107. https://doi.org/10.33082/td.2017.1-1.10
Section
INFORMATION INTELLECTUAL TECHNOLOGIES IN AUTOMATED SYSTEMS OF DATA PROCESSING AN