RESEARCH ON THE STRENGTH OF THE CONTAINER FRAME OF AN IMPROVED DESIGN DURING LOADING AND UNLOADING OPERATIONS

Keywords: container frame, design improvement, frame loading, frame strength, loading and unloading operations

Abstract

Introduction. To increase the volume of cargo transportation in international traffic, container transportation has become widespread. This is due to the possibility of transporting containers by almost all modes of transport, which significantly speeds up the transportation of goods from the sender to the recipient. At the same time, containers are damaged during operation, which necessitates the implementation of unscheduled types of their repairs, and, accordingly, additional costs for maintenance in operation. Purpose. Research into the strength of a container frame of improved design during loading and unloading operations. Results. To ensure the safety of containers in operation, it is proposed to improve the design of their frame by introducing braces and horizontal belts. In order to determine the internal force factors that arise in the container frame when it is lifted by the upper fittings, a calculation was performed in the PC “Lira – SAPR”. The study was conducted on the example of a universal container of standard size 1 CC. In this case, the container frame was considered as a rod structure, which is fixed to the upper fittings and perceives the vertical load caused by its own weight and the weight of the cargo. Based on the obtained values of the force factors, the profile of the braces and horizontal belts of the container frame was determined. Taking into account the selected profile of the braces and horizontal belts, a spatial model of the frame was built and its strength was calculated. In this case, the finite element method, which is implemented in SolidWorks Simulation, was applied. It was found that the proposed improvement is expedient. This makes it possible to reduce the maximum stresses in the container frame by 7% compared to a typical design. Conclusions. The results of the research will contribute to the creation of recommendations for the design of modern container structures with improved technical, economic and operational characteristics. This, in turn, will allow to increase the efficiency of container transportation, including in international traffic.

Downloads

Download data is not yet available.

References

1. Ловська А. О., Діжо Я., Рибін А. В., Рукавішников П. В. Особливості визначення показників міцності кузова напіввагона при перевезенні в ньому контейнерів. Наукові вісті Далівського університету. 2024. № 26. DOI: 10.33216/2222-3428-2024-26-9

2. Reidemeister O. H., Kalashnyk V. O., Shykunov O. A.. Modernization as a way to improve the use of universal cars. Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту. 2016. № 2 (62). DOI: 10.15802/stp2016/67334

3. Xiaoxiong Zha and Yang Zuo. Theoretical and experimental studies on in-plane stiffness of container structure with holes. Advances in Mechanical Engineering. 2016. Vol. 8(6). P. 1–17. DOI: 10.1088/10.1177/1687814016651372

4. Turkay Yildiz. Design and Analysis of a Lightweight Composite Shipping Container Made of Carbon Fiber Laminates. Logistics. 2019. Vol 3. No. 18. DOI: 10.1088/10.3390/logistics3030018

5. Vatulia G. L., Lovska A. O., Krasnokutskyi Ye. S. Research into the transverse loading of the container with sandwich-panel walls when transported by rail. IOP Conf. Series: Earth and Environmental Science. 2023. Vol. 1254. 012140. DOI: 10.1088/1755-1315/1254/1/012140

6. Lovska A., Stanovska I., Kyryllova V., Okorokov A., Vernigora R. Determining the vertical load on a container with a floor made of sandwich panels transported by a flat wagon. Eastern-European Journal of Enterprise Technologies. 2024. № 6/7 (132). P. 6–14. DOI: 10.15587/1729-4061.2024.311324

7. Gerlici Ju., Lovska A., Pavliuchenkov M., Krachenko O. Peculiarities of designing the frame of a universal container made of rectangular pipes. Communications – Scientific Letters of the University of Zilina. 2024. Vol. 26, Issue 2. P. B72–B79. DOI: 10.26552/com.C.2024.016

8. Cheng K. J., Lees C. H., Peng C. C. Design and structural analysis of high payload C1 container. Journal of Physics: Conference Series. 2024. Vol. 2878. 012012. DOI: 10.1088/1742-6596/2878/1/012012

9. Барабаш М. С., Сорока М. М., Сур’янінов М. Г. Нелінійна будівельна механіка з ПК Ліра-Сапр. Одеса : Екологія, 2018. 248 с.

10. ДСТУ 7598:2014. Вагони вантажні. Загальні вимоги до розрахунків та проєктування нових і модернізованих вагонів колії 1520 мм (несамохідних). Київ, 2015. 250 с.

11. Пустюльга С. І., Самостян В. Р., Клак Ю. В. Інженерна графіка в SolidWorks : навчальний посібник. Луцьк : Вежа, 2018. 172 с.

12. Козяр М. М., Фещук Ю. В., Парфенюк О. В. Комп’ютерна графіка: SolidWorks : навчальний посібник. Херсон : Олді-плюс, 2018. 252 с.

13. Juraj Gerlici, Alyona Lovska, Glib Vatulia, Mykhailo Pavliuchenkov, Oleksandr Kravchenko, Sebastian Solcansky. Situational adaptation of the open wagon body to container transportation. Applied Sciences. 2023. Vol. 13(15). 8605 р. DOI: 10.3390/app13158605

14. Philip Chie Hui Ling, Cher Siang Tan. Numerical Simulation of ISO Freight Container Using Finite Element Modelling. Lecture Notes in Civil Engineering. 2019. Vol 53. P. 463–469. DOI: 10.1007/978-3-030-32816-0_31
Published
2025-06-25
How to Cite
LovskaА., Pavliuchenkov, M., Muradian, A., & Demydiakov, O. (2025). RESEARCH ON THE STRENGTH OF THE CONTAINER FRAME OF AN IMPROVED DESIGN DURING LOADING AND UNLOADING OPERATIONS. Transport Development, (2(25), 34-44. https://doi.org/10.33082/td.2025.2-25.03
Section
INDUSTRIAL MECHANICAL ENGINEERING