ANALYTICAL METHOD FOR PISTON TOP DEAD CENTER DETERMINATION IN A PARAMETRIC DIAGNOSTIC SYSTEM FOR MARINE DIESEL ENGINES

Keywords: marine diesel engine, parametric diagnostics, working process monitoring, top dead center, indicated power, real-time diagnostic systems, portable devices

Abstract

Introduction. A novel approach to developing a portable real-time parametric diagnostic system for marine engines is proposed. The system leverages modern Android/iOS devices, which receive data from sensors via Bluetooth, perform necessary calculations, and display diagrams and data in real-time. The system under development employs a combination of a gas pressure sensor in the working cylinder and a vibroacoustic sensor, expanding the diagnostic capabilities of marine diesel engines during operation. This solution enables the diagnosis of the fuel injection system, valve timing mechanism, and other engine systems. The objective of this work is to develop a noise-resistant analytical method for determining the Top Dead Center (TDC) position and data synchronization, capable of operating with imprecise input data when testing marine diesel engines during operation. To achieve this, it is crucial to solve the problem of analytical TDC determination, as the system does not use specialized sensors for this purpose. Results. Аn algorithm for TDC determination is proposed, based on the analysis of the original pressure diagram rather than its derivative, minimizing the impact of digital and analog noise. The proposed algorithm for TDC determination and subsequent data synchronization operates without information about the actual compression ratio in the cylinder, which is characteristic of modern engines with variable valve timing. The algorithm also functions with approximate data on charge air pressure, which is refined through iterations. Additionally, a formula for determining the initial TDC position is proposed. Conclusions. The data processing methods presented in this article allow for accurate estimation of indicated power through precise TDC determination, as well as optimal adjustment of engine systems and result monitoring during operation. The proposed approach to real-time marine engine diagnostics offers several advantages over traditional methods. It provides more accurate analysis of the working process, improves control over fuel combustion quality, and helps minimize harmful emissions. This contributes to meeting IMO requirements and opens new possibilities for optimizing marine engine operation, improving their performance characteristics, and reducing negative environmental impact.

Downloads

Download data is not yet available.

References

1. IMO Strategy on reduction of GHG emissions from ships. International Maritime Organization : веб-сайт. URL: https://www.imo.org/en/Our-Work/Environment/Pages/IMO-Strategy-on-reduction-of-GHG-emissions-from-ships.aspx (дата звернення: 09.06.2024).

2. Bach H., Hansen T. IMO off course for decarbonisation of shipping? Three challenges for stricter policy. Marine Policy. 2023. Vol. 147. P. 105379 DOI: https://doi.org/10.1016/j.marpol.2022.105379 (date of access: 04.06.2024).

3. Heywood J. B. Internal combustion engine fundamentals. New York : McGraw-Hill. 1988. 930 p.

4. Варбанець Р. А. Діагностичний контроль робочого процесу суднових дизелів в експлуатації : дис. … д-ра техн. наук : 05.05.03. Одеса, 2010. 314 с.

5. Advanced marine diesel engines diagnostics for IMO decarbonization compliance / Varbanets R, Minchev D, Savelieva I, Rodionov A, Mazur T, Psariuk S, Bondarenko V. AIP Conference Proceedings. 2024. Vol. 3104(1). P. 020004. DOI: https://doi.org/10.1063/5.0198828.

6. Polanowski S. Determination of location of Top Dead Centre and compression ratio value on the basis of ship engine indicator diagram. Polish Maritime Research. 2008. Vol. 15, no. 2. DOI: https://doi.org/10.2478/v10012-007-0065-2 (дата звернення: 05.06.2024).

7. Tunestål P. Model Based TDC Offset Estimation from Motored Cylinder Pressure Data. IFAC Proceedings Volumes. 2009. Vol. 42, no. 26. P. 241–247. DOI: https://doi.org/10.3182/20091130-3-fr-4008.00032 (да та звернення: 03.06.2024).

8. Pipitone E., Beccari A. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach. Applied Thermal Engineering. 2010. Vol. 30, no. 14-15. P. 1914–1926. DOI: https://doi.org/10.1016/j.applthermaleng.2010.04.012 (дата звернення: 14.05.2024).

9. Staś M. J. An Universally Applicable Thermodynamic Method for T.D.C. Determination. SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States, 2000. DOI: https://doi.org/10.4271/2000-01-0561 (дата звернення: 04.07.2024).

10. Tazerout M., Le Corre O., Stouffs P. Compression Ratio and TDC Calibrations Using Temperature – Entropy Diagram. International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States, 1999. DOI: https://doi.org/10.4271/1999-01-3509 (дата звернення: 24.05.2024).

11. Determination of top dead centre location based on the marine diesel engine indicator diagram analysis / R. Varbanets et al. Diagnostyka. 2020. Vol. 21, no. 1. P. 51–60. URL: https://doi.org/10.29354/diag/116585 (дата звернення: 24.06.2024).

12. Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data / S. Neumann et al. Diagnostyka. 2019. Vol. 20, no. 2. P. 19–26. URL: https://doi.org/10.29354/diag/104516 (дата звернення: 04.07.2024).

13. Improvement of Diagnosing Methods of the Diesel Engine Functioning under Operating Conditions / R. Varbanets et al. International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States, 2017. URL: https://doi.org/10.4271/2017-01-2218 (дата звернення: 04.07.2024).

14. IMES cylinder pressure sensors : веб-сайт. URL: https://www.imes.de(дата звернення: 16.01.2024).

15. Digital Twin Test-Bench Performance for Marine Diesel Engine Applications / D. Minchev et al. Polish Maritime Research. 2023. Vol. 30, no. 4. P. 81–91. URL: https://doi.org/10.2478/pomr-2023-0061 (дата звернення: 04.07.2024).

16. Vibrodiagnostics of marine diesel engines in IMES GmbH systems / S. Neumann et al. Ships and Offshore Structures. 2022. P. 1–12. URL: https://doi.org/10.1080/17445302.2022.2128558 (дата звернення: 04.07.2024).

17. Neumann S. High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control [Text]. CIMAC Congress. Hamburg : Digest, 2001. Р. 1–12.

18. Lehmann & Michels GmbH. Premet type L, LS, and XL electronic indicators. 2006. Retrieved from: http://www.lemag.de/fileadmin/user_upload/PREMET_liste_100_04_2006.pdf (дата звернення: 11.06.2024).

19. MARIDIS Maritime Diagnosis & Service: веб-сайт. URL: https://www.maridis.de/en/contact-us.html (дата звернення: 24.01.2024).

20. Minchev D. Blitz-PRO User’s manual. Retrieved from: URL: http://blitzpro.zeddmalam.com/extra/Tutorial/Help.pdf (дата звернення: 09.06.2024).

21. Himmelblau D. M. Applied nonlinear programming. New York : McGraw-Hill. 1972. 498 p.

22. Powell MJD. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal. 1964. Vol. 7, Issue 2. P. 155–162. DOI: https://doi.org/10.1093/comjnl/7.2.155 (дата звернення: 19.06.2024).
Published
2024-10-07
How to Cite
Varbanets, R., Minchev, D., & Zalozh, V. (2024). ANALYTICAL METHOD FOR PISTON TOP DEAD CENTER DETERMINATION IN A PARAMETRIC DIAGNOSTIC SYSTEM FOR MARINE DIESEL ENGINES. Transport Development, (3(22), 41-59. https://doi.org/10.33082/td.2024.3-22.04
Section
MARITIME AND INLAND TRANSPORT