ANALYTICAL DESCRIPTION OF INDICATOR DIAGRAMS

  • Ie.V. Bilousov Kherson State Maritime Academy
  • V.P. Savchuk Kherson State Maritime Academy
  • H.Ya. Tuluchenko Kherson National Technical University
Keywords: indicator diagram, polytropic curves, Vibe function, approximation

Abstract

Introduction. The disadvantage of presenting indicator diagrams in engine condition monitoring systems is their representation using splines. The structure of polynomials, which describe the links of splines, does not reflect the laws of thermodynamics, mechanics, chemical kinetics and heat transfer, which are the corresponding processes during the operating cycle of the engine. Purpose. To substantiate the structure of the analytical description of the indicator diagram for a two-stroke diesel engine on the basis of piecewise continuous functions. Develop an algorithm for approximating the indicator diagram with a piecewise continuous function using the tools of the DirectSearch package. Results. Finding the numerical values of the parameters of the approximating function is carried out by solving the problem of nonlinear conditional optimization using the method of conjugate directions with orthogonal shift. Processing of test experimental dependences has shown the possibility of finding the indicators of physical and chemical processes of the engine cycle (on the example of a twostroke diesel engine) with satisfactory accuracy according to the indicator diagram. Conclusions. Approximation of indicator diagrams by piecewise continuous functions, which include functions with physical and chemical content, allows for theoretical analysis of the quality of engine cycles. The function proposed for the approximation of the indicator diagram can be considered as a semi-local approximating spline, the links of which have a smooth connection of the order of C0 . Its individual links are described by linear functions, polytropic functions, a function that is a modified derivative of the Vibe function, a function that simulates gas leakage from the tank in the critical mode. Prospects for further research are related to increasing the accuracy of the approximation by increasing the number of units of the piecewise function, which corresponds to the approximation of the indicator diagram with a larger number of polytropic curves. This, in turn, provides a more adequate description of the indicator chart by highlighting the links on which the heat capacity of the working fluid can be considered constant or varying in polynomial dependences.

Downloads

Download data is not yet available.

References

1. Валишин А. Результаты разработки и тестовых испытаний диагностической системы оценки качества внутрицилиндровых процессов дизеля. Zeszyty Naukowe. 2013. № 34 (106). С. 85–90.

2. Варбанец Р.А., Залож В.И., Тарасенко Т.В., Белоусова Т.П., Ерыганов А.В. Метод аналитической синхронизации данных мониторинга рабочего процесса транспортных дизелей в эксплуатации. Авіаційно-космічна техніка і технологія. 2020. № 7(167). С. 118–128. DOI: 10.32620/aktt.2020.7.17

3. Вибе И.И. Новое о рабочем цикле двигателей. Москва : МАШГИЗ, 1962. 270 с.

4. Возницкий И.В., Пунда А.С. Судовые двигатели внутреннего сгорания. Т. 2. Москва : МОРКНИГА, 2008. 470 с.

5. Крутов В.И. Техническая термодинамика. Москва : Высшая школа, 1981. 439 с.

6. Кукис В.С., Романов В.А., Рыбалко А.И., Постол Ю.А. О возможной аппроксимации рабочего цикла двигателя Стирлинга. Двигатели внутреннего сгорания. 2010. № 2. С. 18–22.

7. Лозня С.В., Пустовой С.А. Аппаратно-программные средства для разработки и оптимизации управления ДВС с искровым зажиганием. Авиационно-космическая техника и технология. 2014. № 10(117). С. 123–129.

8. Моисеев С.Н. Универсальный метод оптимизации без использования производных с квадратичной сходимостью. Воронеж, 2011. URL: http://www.twirpx.com/file/1534928/

9. Савчук В.П., Белоусов Е.В., Самарин А.Е., Симагин А.Ф. Обеспечение надежности головных подшипников судовых малооборотных двигателей, работающих на режимах частичных нагрузок. Вестник двигателестроения. 2018. № 2. С. 21–27.

10. Charchalis A. Complex Measurement System for Enhancement of Capability for Marine Engines Diagnostics. International Journal on Marine Navigation and Safety of Sea Transportation. 2013. Vol. 7. № 3. P. 415–420. DOI: 10.12716/1001.07.03.14

11. Charchalis A. Diagnostic and Measurement System for Marine Engines. WSEAS TRANSACTIONS on SYSTEMS and CONTROL. 2020. Vol. 15. P. 349–355. DOI: 10.37394/23203.2020.15.36

12. Gerasimos Theotokatosa, Cong Guanb, Hui Chenb, Iraklis Lazakisa. Development of an Extended Mean Value Engine Model for Predicting 2 the Marine Two-Stroke Engine Operation at Varying Settings. Energy. 2018. Vol. 143. Issue C. P. 533–545. DOI: 10.1016/j.energy.2017.10.138

13. Ghojel J.I. Review of the Development and Applications of the Wiebe Function: a Tribute to the Contribution of Ivan Wiebe to Engine Research. International Journal Engine Research. 2010. Vol. 11. Issue 4. P. 297–312. DOI: 10.1243/14680874JER06510

14. Graph2Digit 0.7.1b. URL: http://plsoft.su/digitizer.html

15. Haosheng Shen H., Jundong Zhang, Baicheng Yang and Baozhu Jia. Development of a Marine Two-Stroke Diesel Engine MVEM with In-Cylinder Pressure Trace Predictive Capability and a Novel Compressor Model. Journal of Marine Science Engineering. 2020. Vol. 8. Issue 204. 33 p. DOI: 10.3390/jmse8030204

16. Johnsson, J.-H.M., Saldh, J. Analysing the Effects Variable Injection and Exhaust Valve Timing Have on a Two-Stroke Diesel Engine. Gothenburg: Chalmers University of Technology, 2018.

17. Kamaltdinov V.G., Lysov I.O., Nikiforov S.S. Diesel Engine Operating Cycle Optimization with Simulation of Combustion Process by Double-Wiebe Function. Procedia Engineering. 2015. № 129. P. 873–878.

18. Krakowski R. Diagnosis Modern Systems of Marine Diesel Engine. Journal of KONES Powertrain and Transport. 2014. Vol. 21. № 3. P. 191–198. DOI: 10.5604/12314005.1133203

19. LEMAG PREMET® C. URL: https://www.cmtechnologies.de/en/products-en/performance-and-efficiency-monitoring/premet-c.html

20. Łosiewicz Zbigniew. Use Assessment of Modern Diagnostic Systems of Internal Marine Combustion Engines at the Support Phase of Exploatation Decisions in the Aspect of Economic Criteria. Journal of Polish CIMAC. 2010. Vol. 5. № 2. Р. 121–130.

21. Piedrahita C.A.R., Riaza H.F.Q. Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I. C. Engines: A Computational Model. SAE Technical Paper. 2003. Issue 2003-01-0728. DOI: 10.4271/2003-01-0728

22. Pielecha I., Merkisz J. Optimizing the Shape of a Compression-Ignition Engine Combustion Chamber by Using Simulation Tests. Polish Maritime Research. 2019. Vol. 26. № 3 (103). Р. 138–146. DOI: 10.2478/pomr-2019-0054

23. Polanowski S. Determination of location of Top Dead Centre and Compression Ratio Value on the Basis of Ship Engine Indicator Diagram. POLISH MARITIME RESEARCH. 2008. Vol. 15. № 2(56). P. 59–64. DOI: 10.2478/v10012-007-0065-2

24. Unitest Marine Simulators. URL: https://www.unitest.pl/

25. Yongming Feng, Haiyan Wang, Ruifeng Gao, Yuanqing Zhu. A Zero-Dimensional Mixing Controlled Combustion Model for Real Time Performance Simulation of Marine Two-Stroke Diesel Engines. Energies. 2019. № 12. 19 p. DOI: 10.3390/en12102000
Published
2021-04-29
How to Cite
Bilousov, I., Savchuk, V., & Tuluchenko, H. (2021). ANALYTICAL DESCRIPTION OF INDICATOR DIAGRAMS. Transport Development, (1(8), 47-61. https://doi.org/10.33082/td.2021.1-8.05
Section
RIVER AND SEA TRANSPORT