DETERMINATION OF DANGEROUS ACTIONS OF OFFSHORE VESSEL OPERATORS DURING USE OF LASER-OPTICAL POSITIONING REFERENCE SYSTEM
Abstract
Introduction. Current trends in the offshore industry are focused as much as possible on constantly improving the control of dangerous situations that may arise during any operations and reducing accidents and the consequences of accidents to a minimum in case of their occurrence. Over the past 15 years, it has been possible to significantly reduce accidents on offshore vessels by continuously improving the Dynamic Positioning system (DP), which made it possible to automatically hold the vessel at a given position for a long time, and perform various types of operations at a critically short distance to dangerous oil and gas complexes located on the high seas. The accuracy of maintaining the position of an offshore vessel is achieved using global and local reference positioning systems, relative to moving and stationary objects. Statistics for 2020 showed that the most attractive in terms of "price-quality" is the local reference positioning system, which works on the laseroptical principle, but the use of such a system also does not guarantee trouble-free, timely, if the operator of the ship’s DP does not have much experience in using such systems and does not know where and under what conditions there may be a risk of loss position, and collision with the object of positioning. Between 2010 and 2020, 32% of accidents and dangerous situations occurred precisely because of operator errors when working with the laser-optical positioning reference system (LOPRS). Purpose. The purpose of the study is to identify dangerous actions of the crew of an offshore vessel that can lead to an emergency situation when using a laser-optical reference positioning system, using a modern method of theoretical analysis of system processes (TASP). Results. The paper proposes a method for analyzing the safety of using LOPRS, which works on the principle of reflection of laser beam from a reflector. With the help of TASP, the structure of the management organization was evaluated, the functional structure of the system management was modeled, safety requirements and restrictions were identified at the system level, causal scenarios for detailed determination of dangerous actions were considered, and the identified dangerous actions were analyzed. Conclusions. The peculiarity of the proposed TASP method is that, unlike traditional methods, TASP considers security as a management problem, and not a problem of component failure. TASP also includes both human system operators and gram components in the analysis, addressing both content and providing more information about their behavior relative to the electromechanical components of the system.
Downloads
References
2. IMCA M 103. Guidelines for the Design and Operation of Dynamically Positioned Vessels. International Marine Contractors Association. 2020. Rev. 4.1. Pp. 24–31.
3. Бондаренко С.И. Эксплуатация судов с учетом использования системы динамического позиционирования. Водный транспорт. 2016. № 1(24). С. 6–11.
4. Богомья В.И., Бондаренко С.И., Кривенко Н.В. Разработка научно-технических предложений по применению систем динамического позиционирования. Водный транспорт. 2012. № 3(15). С. 12–17.
5. Мойсеєнко В.С. Визначення робочих діапазонів лазерно-оптичної системи опорного позиціонування Fanbeam при різних умовах хвилювання моря. Сучасні інформаційні та інноваційні технології на транспорті (MINTT –2019). 2019. C. 54–57.
6. Гудков Д.Н., Тихонов И.В. Системы динамического позиционирования судов как эргатический инструмент повышения безопасности мореплавания. Системи обробки інформації. 2013. № 8(115). С. 32–36.
7. Pil I. Causes of Dynamic Positioning System Failures and Their Effect on DP Vessel Station Keeping. Estonian Maritime Academy. 2018. Pp. 29–46.
8. Herdzik, J. Dynamic positioning systems during emergency or unexpected situations. Journal of KONES. 2013. No. 20(3). Pp. 153–159.
9. Габрук Р.А. Формалізація комплексної методики гарантування безпеки динамічного позиціонування. Водний транспорт. 2013. № 2. С. 202–207.
10. Габрук Р.А. Принципи створення програмного забезпечення програмно-апаратних комплексів підтримки прийняття рішень щодо безпеки динамічного позиціонування. Водний транспорт. 2013. № 3. С. 35–37.
11. Лелеко М. В. Шляхи підвищення якості взаємодії оператора з системою динамічного позиціонування. Науковий вісник Херсонської державної морської академії. 2018. № 1(18). С. 27–33.
12. Moiseenko V.S., Zinchenko S. M., Tovstokoryi O. M. Automatic Beam Control of Laser-Optical Position Reference System. II International Maritime Scientific Conference of the Ship Power Plants and Technical Operation Department of Odessa National Maritime University (MPP&O-2020). 2020. Pp. 361–367. doi: 10.13140/RG.2.2.19286.40006
13. Hauf K.S. Analysis of Loss of position incidents for dynamically operated vessels. Norwegian University of Science and Technology. 2014. Pp. 14–37.
14. Dong Y., Rokseth B., Vinnem E.J., Utne I.B. Analysis of Dynamic Positioning System Accidents and Incidents with Emphasis on Root Causes and Barrier Failures. Risk, Reliability and Safety: Innovating Theory and Practice. 2016. doi: 10.1201/9781315374987-28
15. Габрук Р. А. Безпека динамічного позиціонування в умовах погіршеної роботи супутникової радіонавігаційної системи. Науковий вісник Херсонської державної морської академії. 2019. № 2(21). С. 4–19.
16. Nosov, P., Zinchenko, S., Popovych, I., Safonov, M., Palamarchuk, I., Blakh, V. Decision support during the vessel control at the time of negative manifestation of human factor. 3rd International Workshop on Computer Modeling and Intelli-gent Systems. 2020. Pp. 12–26.
17. Rokseth B., Utne I.B. Dynamic risk assessment of marine systems. Safety and Reliability of Complex Engineered Systems. 2015. Pp. 725–733. doi: 10.1201/b19094-98
18. Dong Y., Vinnem E.J., Utne I.B. Improving safety of DP operations: learning from accidents and incidents during offshore loading operations. EURO Journal on Decision Processes. 2017. No 5. Pp. 5–40. doi: 10.1007/s40070-017-0072-1
19. Товстокорий О.М., Мойсеєнко В.С. Керування положенням полюсу повороту на двогвинтовому конвенційному судні. Науковий вісник Херсонської державної морської академії. 2017. № 2(17). С. 101–109.
20. Desai N. Dynamic Positioning: Method for Disaster Prevention and Risk Management. Procedia Earth and Planetary Science. 2015. No. 11. Pp. 216–223. doi: 10.1016/j.proeps.2015.06.028