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Summary

Introduction. Recently, much attention in applications of stochastic models to real
production/transportation systems modeling and control have been paid. It is explained
by necessity to take into account the uncertainty and risks when projecting/operating
such kind of systems. Purpose. To formulate and solve the problem of optimal values of
products removal rates finding. Results. The mathematical model of a manufacturing
system with several kinds of final product and one kind of raw materials is under
consideration. This production system is interpreted as two-phase storage system
with random input flow of raw materials which is described by Levy process with
nondecreasing sample paths and zero drift. The first phase consists of one warehouse
for raw materials storage and second one consists of industrial equipment and several
parallel warehouses for final products storage. The production rates and rates of
products removal from warehouses are constant. Conclusions. The joint distribution of
storage levels of raw materials and any kind of final product at warehouses is found in
closed form (in the terms of Laplace-Stieltjes transform). The problem of optimal values
of products removal rates finding is formulated and solved.

Key words: Two-phase manufacturing system, random input, Levy process,
probabilistic distribution.
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Anomauisn

Bemyn. Ocmanni poku eenuxa ysaza npuoiiaemoscsa 3aCmoCy8aHHI0 CIMOXACMUYHUX
Molenell 01 MOOeN08AHHA BUPOOHUYO-MPAHCNOPMHUX CUCEM Ma ONMUMALLHOZO
yupaeninna numu. Lle suxauxarno HeoOXionicmio paxo8ysamu haxmopu HegU3HAYEHOC-
mi ma pusuKy 8 npoyeci npoOeKmy8anHs maxKux cucmem ma ynpasninna Humu. Mema.
Ilocmanoexa ma piwienns npobaremu 8UHAYEHHS ONMUMATbHUX 3HAYEHb IHIMEHCUBHOC-
meti ugezenHs 3i Cknady 2omogoi npodykyii. Pesynemamu. Po3pobnena mamemamuy-
HA MOOenb 8UPOOHUYOT cucmemu 3 0eKiIbKOMA UOAMU 20M080I NPOOYKYii ma 0OHUM
sudom cuposunu. Bupobnuua cucmema inmepnpemyemucs ax 080xgasosa cucmema
30epedicents 3anacieé 3 GUNAOKOBUM BXIOHUM NOMOKOM CUPOBUHU OOHO20 8UDY, AKUU
onucyemucs npoyecom Jlegi 3 Hechaouumy mpaekmopiamu ma Hy1b08UM 3HECEHHIM.
Tepwa paza exnrouae cknaod 0715 30epedcents CUposuHU, a Opyea Gasa KIOHAE 8UPoo-
HUYe 001A0HANHS Ma 0eKLIbKa NAPANelIbHUX CKIA0I8 075l 30epedcentsl 20moBoi NPooyK-
yii. Inmencusnocmi eupodbHUYMEa 20mMoeoi NPOOYKYii, a MAKONC BUBE3EHHSA 20MOBOT
npoOYKYii 3i CKNAdis, 88aNHCAIOMbCA 3A0aHUMU Ma nocmitinumu. Bucnoeku. 3natioeno
6 ananimuuHomy 8uensoi (y mepminax nepemeopenns Jlanaacy-Cmunvmoeca) cymicHutl
PO3N00ILN pisHie 3anacie cuposuru ma 20moeoi npodykyii. Cihopmynvosana ma supiuie-
HA NPOOIEMA 3HAXOOIHCEHHS ONMUMATLHUX 3HAYEHb THMEHCUBHOCTNEL BUBE3EHHS 20MO-
601 NpooyKYii 3i ck1aois.

Knrouosi cnosa: osogpasna supodbnuua cucmema, sunaoxosutl 6xio, npoyec Jlesi,
IMOBIpHICHUL PO3NOOIIL.

1. Introduction

It is well-known that application of the Markov processes for modeling of different
types of production/storage systems is motivated by necessity to take into account
the following main factors of internal and external uncertainty:

a) random moments of the orders’ giving from market to an enterprise for a product
manufacturing;

b) irregularity of raw materials delivery to enterprise by transport;

c) restricted reliability of industrial equipment.

During the last 2-3 decades the much researches devoted to development and analysis
of Markovian models of production/storage systems were fulfilled [1-6]. But it is almost
impossible very often to study the real large-scale systems or networks by the analytical
means because of dimension barrier. Therefore, it is expediently to develop the theoretical
approaches which allow us to find out the conditions of full or partial decomposition
of corresponding mathematical models. Typical example of such kind is the queueing
networks theory [1; 2].

In our works [7-10] an approach was proposed for modeling the large-scale
stochastic systems which is based on development of continuous variant of queueing
networks theory — so-called stochastic storage networks theory. Generally speaking, this
approach is a generalization of some classical stochastic storage models for the case
of set of interacting single storehouses.

In this paper, the application of this analytic approach is demonstrated for modeling
the two-phase production/storage system with several kinds of final product and random
input of raw materials.
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2. Description of mathematical model

Consider the following two-phase manufacturing system. The first phase consists
of one warchouse for raw material storage. From this warehouse, if it isn’t empty,
the raw materials come to M machines (industrial equipment), located in parallel, for
manufacturing corresponding final products. At the m-th machine the raw materials
come with the rate W and with the same rate the m-th machine manufactures the final
product of m-th kind. Correspondingly, the m-th final product comes to the warchouse
(of second phase) with the rate W and with the rate U < W it removes off (i.e. comes
to consumers) if this warehouse isn’t empty. The value U may be interpreted as the rate
of m-th final product delivery to consumers. Once the storage level of raw materials
at warchouse has been exhausted, then all machines have been stopped. It is assumed
also that all warehouses have the unlimited capacities. This assumption, of course,
is only simplification of reality but, from the mathematical point of view, analysis
of a storage model with finite warehouses’ capacities may be provided on the basis
of this more simple case [10].

The input flow of raw materials is Levy process X(¢) [3] with nonnegative trajectories
and zero drift, X(0) = 0. In our case X(¢) has the meaning of total input of raw materials
during the time interval (0, 7]. As it is known [3]

Ee XD _ ;70N Re s>0, 1)
where @(s) is the cumulant of X(¢). For example, for compound Poisson process
¢(s) =A(1—=B(s)),
g
where A is the rate of the Poisson stream; B(s)= [ e STAB(x), B(x) is the distribution
0

function (d.f.) of jump sizes which is concentrated on R, =[0,00). In this case process
X(#) may be interpreted in the following “logistical” way: through the exponentially
distributed with mean 1/A time intervals an enterprise receives an order from market
for manufacturing a random quantities of final products. These quantities demand
a batch of raw materials of random size with d.f. B(x).

We denote by & (#) the content of warehouse for raw materials storage at moment
tand by (¢) the amount of the m-th final product at warchouse at moment 7. Let

2m

&1 (0),§1m (0),m=1,2,..., M, are the non negative values.

According to the above assumptions the processes & (¢),&,,(¢),...,§ () satisfy

M

the following system of integral equations (with probability 1):

§ =5 O)+XO)-W(—-1,@), 2)

&y, (0=6y O+ (@~1,0)-U, (-1, ). m=LM, @)
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where
t 5 .
B (0= O, (0= [u(E (uy,, (Ndrm =11

M
u(z)=0,ifz>0,u(0)=LW= 3% Wm.
m=1

Note that Il (),1 m (t),m=1,M, are duration of time when the warehouses have

remained the empty in the time interval (0, ¢].
The Egs. (2), (3) are usual, for storage theory, balance relations describing input
and output processes of material flows [3]. The conditions

Wy >Uppm=T,M, )

are necessary to avoid the trivial situations, So, for example, if for any warehouse
of second phase inequality (4) isn’t valid, then this warehouse will become empty with
probability 1 in a finite time and will remain empty after that.

3. Analysis of mathematical model

The main results concerning analysis of the model (2), (3) we formulate as
the following theorems.

Theorem 1. The system of integral equations (2), (3) has the unique non negative
solution

& (0 =&,0)+ X(0) Wi+ WI, (1), 5)

&y =8y (O+V 1=W [(O)+U 1, (), (©)

where

W1, (#) = max{0,~§, (0) ~in [X () -Wtl},

fOSrSt
U L, ()=max{0,-&, (0)-a & (0)-
—1nf0$rgt[ocmX(t)—Umt]},m=1,M; Vm =Wm —Um;
o =W _|W.

m o m

The proof of Theorem 1 is based on reduction of Egs. (2), (3) to classical storage
model [3]. To prove it we multiply both sides of Eq. (2) by ., , take the sum of Egs.(2)
and (3), and take into account the identity

u(il (t))u(§2m (1) = u(amal )+ azm ().

After these manipulations we arrive at the following equation for the process
S =5,(0+Ey ():
Sm(D=5m0) + oy, X(O)~Uy, (1 =1, (1)) ()
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The Egs. (2) and (7) are the classical storage models with the Levy input processes
X(?), o, X () and the release rates W, U m correspondingly. Applying the known

results for classical storage model [3] we get the formulas (5) and (6).
The further results are related to determination of joint distribution of stochastic

processes ?;1 (t),ézm (t),l1 (t),]zm (7). Let us denote
* ’ © , —mt
‘Pm(s,E,x;(o): j‘Pm(s,E,x;co)e Ol gt Rew >0,
0
where ‘Pm(S,E,X;f) =E{exp[-(s,&(1)) - (E,Im ())|€(0)=x},

= S = = >
s (SI’SZ)’E ((ol,(oz),x (xl,xz)_O.
Theorem 2. The Laplace transform of conditional joint distribution of random
vectors &(t) and Im(t) is given by

%k 4 . _ _(S,X) _ _ % /4 . _
‘{’m(s,E,x,w)—[e (le s Wm+(ol)H2m(s2,E,x,(o)

2

~(s,U,, + 0, )H;km (E,x,0)][o+ SoV i =51V (s )]_1, (8)

Rew>0, Re 8; >O,Re(ol. >0,i=12,

H;k £ x.0)= exp— (x1 +Xy / ocm)nlm — o, / Wm
m b

® +Um(0)1 +n1mW)/Wm

2
H* E . _
om S EX0)=
% ,
= [exp(—s2x2 — nle) — (S2Um + 0, )Hlm (E,x; )] x
x(anm - Wms2 +o, )_1,

N =", (0)1, m),nzm =N, (SZ’ ®) are the unique continuous solutions to
the functional equations
03+c01Vm /Wm —Umnlm /am +¢(n1m) =0, 9)
(o+s2Vm —anm +¢(n2m):0 (10)
with the following properties:

-1
0 in 0.0) _ ocm(Um—ocmy) ,amy<Um
do 1m 0=0+ o, y=U |,
m m

-1
_) W=y) y<W
8con2m(0’m)‘co:0+ {

00, y=W,
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where v =9'(0) = EX (1) <o0; ¢(s) is the cumulant of X(t) (see (1));

0 0

I’ 1’ the la rgest positive

b) as ®— 0+, ~1m(0,03) — N, ,wheren

; 0 _ 0 0 .
root of the equation Umnlm = ocm(b(nlm) and Yom >0,iff
oa y>U .

m m

The proof of Theorem 2 may be given by analogy with the corresponding theorem in

theory of classical storage model (2) or (7) [3]. Particularly, the formula (8) is derived by
* ,

direct calculation of expression ‘Pm (s,E,x; ) taking into account the relations (5), (6).

Using the results of Theorems 1 and 2 we can immediately determine the conditions

under which there exists a limit distribution of the random vector (E_>1 (t)’E"2m (1)), as

well as examine its asymptotic distribution. Setting in (8) 8§ =55 = 0,0)1 =0 we obtain

(j) PR =] exp(—(ozlzm ®)) &l 0)= x1’§2 0)= xz}dt =
(5 +x, lo M (0,0) U (h
=l[1—mze R T /(®2+a7mnlm(0’w))]’

(Q)
m

where LU (0,®) is the root of functional Eq.(9) with @ = 0. By definition, 7 m ()
is a monotone non decreasing function of ¢, therefore /. m t)—>1 m <oo with
probability one. Applying the Tauberian theorem, from (11) we get

e—(x1 +X, /ocm)nlm (0, )

E{exp(-® I )}=1-®,lim
2 2m 220+ U N, (0O,®)/a
2 m 'lm m

The last expression equals to 0 if y<U,, / a,,, and equals to

0
1—m2/(m2+Umn1m /am) (12)

if y>U,, /0y,
Theorem 3. a) Let ®; =0, =0,x1 >0,x, 20. Then as t >0 if Y>W, then
ﬁl ) — OO,cizm (1) —> oo in distribution. If &,y <U,, , then process (cil (t)’a2m @)}

converges weakly to random vector (ﬁl,izm) with distribution given by the Laplace-
Stieltjes transform
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=861 =5282m s W
Efe ! V=(U_ —vo ) 2
¢ m " m s\ =3, V (I)(S )

X

(13)
51 Mo (5> 0P

Wms2 - anm (S2’ 0+)

X

Re ; >0,i=1,2,

where Mo (s2,0+) = limco—>0+ M (sz,oa).

2

b) If m<y<Wc5 < oo,
m
thenlimt_)oop{é ()Of " ~Yom)" <x}=N(x),

where N(x) is standard normal distribution with zero mean and unit variance;
2 = _¢"(0) = Varx (1).
o If y<U,, /am,62 <00,

- (U - )t
. 2 _
then lim, __ P{ U’ 2m ocmcsf m__ <x}=N(x).

The proof of point a) of Theorem 3 is based on the formula (8) and application
of the Tauberian theorem. To prove the point b) note that from (7), it follows

i (t) (YOL _U )t am§1(0)+§2 (0) X(t) Yyt

OLmO'\[ OLmG\f G\/Z
50 U, 0,0
Gf OCmG\/;

It is obvious that the first addend in right-hand side of the last relation tends to 0 as
t —oo. If o,y >U,,, then from (12) follows the existence of finite limit of / m ),
therefore / m )/ Jt = 0indistribution. Since y < W, there exists the limit distribution
of process ﬁl (¢) , hence &1 (t)/\t = 0. Therefore
H—(a y-U )t
i Pﬁzm() (@, v=U, ) <

t—> o0 o G\ﬁ

X(@)—vt
o

zhmt_)ooP{

}-
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But for the Levy process X(7) the last limit equals to N(x) [3]. The point ¢) of Theorem
3 may be proved similarly.

Note that ¢, (#)=0 if &1 (1) = §2m (1)=0. As it follows from theory of classical
storage model and Eq. (7) if o,y <U,,, then

hmt e P{gm 1)=0}= hmt oo P{&l(t) = O’E*‘Zm ()=0}=
=l-a_y/U_.
m m
Setting in (13) 51 = 0, Sy =5 we have
5 -sizm _ Um . oY anm (s,0+) 4
f(s)=E{e } ( ) (14)
V U "Wn, (s,0+)—sW.
m 2m
Using this formula we can calculate the stationary mean and variance:
S i
=—1'(0)= 15)
m - - ) (
2W-nu,, —o )
n ! 2 OLI’}’ZVI;};’Z
varg, = /"(0)-(/'(0)* = x

6W-nU, —a 1)
x* W +U =20 7)+20"O)F -1)U, —o 7)}-

~(EE, )%

For example, if ¢(s)=A(1-P(s)), then d)(k) 0)=(- l)k + IKB(k) , Where
B(k),k =1,2,3, are the first three initial moments of d.f. B(x).

These results may be used for approximate determination of warehouses’ capacities
and formulation of some optimization problems.

For example, let us it is required to find out the values U,,,,m = 1, M, that minimize
mean current cost for storage of final products and costs for their transportation (E ).
The objective function is given by

- M
E= Zl(emUm +cmE§2m), (16)
m=

where e is transportation cost for delivery of 1 ¢ of m-th final product to consumers;
c, 1s storage expenses per unit of time for 1 ¢ of m-th final product. Taking into
account the formula (15) we can re- write the expression (16)

_ M 2 Mco W -U))
E=Y epUpy+ - mom>m__m’ (17)
=l XV =1 ey U, -0y
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We assume that the following condition hold true:

2 _
M o M ocm(Wm U’”)s

> EE, = )
mel M 200-v),,21 U —o y

C, (18)

where C is the given total capacity of warehouses for final products storage. The
additional constraints are just the stability conditions

Um<amy,m=l,M. (19)

The stochastic optimization problem (17)-(19) may easily be solved by the Lagrange
multipliers method. Its solution is given by

where 1 is Lagrange multiplier which may be found as the unique root of the equation

M
mZZIOLm\/eme/(cm+u):G\/W/2[1+2C(W—y)/62]/(W—y).

4. Conclusions

The results obtained show that it is possible to investigate by analytical means
the stochastic models of storage networks on the basis of classical models for single
storehouse. The further development of our approach may concern the following
directions:

a) Consideration of several kinds of raw materials; but here we must take into
account the following circumstance: once a warehouse for storage of any kind of raw
materials has been empty, then corresponding technological lines (machines) which
process these raw materials must be stopped.

b) Taking into account the irregularity of raw materials delivery at enterprise
and random fluctuation of demand for final product. Here, it is possible to use
the mathematical technique given in the book [3] (Markov-compound Poisson input
and Markov-modulated demand).

c) Investigation of models of manufacturing systems by representation their as
stochastic storage networks with more complex topology.
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